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The notions of kinematical similarity and topological equivalence for abstract 
impulsive differential equations are introduced and some of their properties 
related to the notion of exponential dichotomy are investigated. 

1. INTRODUCTION 

The work of Mil 'man and Myshkis (1960) set the beginning of the 
qualitative investigation of impulsive equations. Subsequent work devoted 
to this subject includes Bainov et aL (1988a-d)  and Palmer (1979a). 

In the present paper the dependence between topological equivalence 
and exponential dichotomy of impulsive equations is investigated and some 
results of Palmer (1979a,b), Coppel (1978), and Daleckii and Krein (1974) 
are generalized. 

2. STATEMENT OF THE PROBLEM 

Let X be an arbitrary Banach space with identity operator L By L ( X )  

we denote the space of  all linear bounded operators acting in X. 
Let J be an arbitrary interval on the real axis • = ( -  ~ ,  ~ ) .  
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Consider the impulsive equation 

dx 
-dr = A(t)x (t t.) (1) 

x(t + ) = Q.x(t . )  (2) 

where the sequence of points T = {t. }~= _~ satisfies the condition 

t , ,< t .+ l  ( n = _ 1 , + 2 , + 3  . . . .  ), lim t . = _ _ o o  
n --~ -I- o o  

Set N j  = {k: tk ~ J } .  
We shall say that condition (A) is met if the following conditions hold: 
A1. The operator-valued function A( .  ): J ~ X  is continuously ex- 

tendable on each interval [t., t. + 1]- 
A2. a n a L ( X )  (n~Nj ) .  

Definition 1. A solution of the impulsive equation (1), (2) we shall call 
a function q~(t) which is continuous for t ~ tn, had discontinuities of the 
first kind at t = t,, is continuous from the left, for t ~ t, satisfies equation 
(1), and at t = t, meets the condition of a " jump" (2). 

Definition 2. An operator U(t, z) associating with each element r ~X a 
solution x(t) = U(t, z)r of equation (1), (2) for which x(z) = ~ is said to be 
a fundamental operator of (1), (2). Instead of U(t, 0) we shall write U(t). 

The validity of  the following formtdas is immediately established: 

U(t, t) = 1, U(t, s) = U(t, z)U(z, s) 

U~(t, z) = A(t)U(t, z) 

where s -<-< z < t. 

(t # tn), U~(t, z) = U(t, z)A(z) 

U(tn + , z) = Q. U(t., z) 

Lemma I. Let conditions (A) hold. 
Then for z -< t < oo (t, z e J )  the following formula is valid: 

IUo(t ,z) ,  t n < z < - t < - t n + l  
I / k + l  

[. t k _ l < Z < t k < t n < t < t . + l  

where Uo(t, z) is the fundamental operator of the equation 

dx 
-37 = a ( t ) x  

(3) 

(z # t.) (4) 

(5) 

(6) 
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We shall say that condition (B) is met if the operators Qn have 
bounded inverse ones. 

L e m m a  2. Let conditions (A) and (B) hold. 
Then for z, t ~ J  the following formula is valid: 

Uo(t, z), tn < t <-- z < tn+ l 

U(t,z)= tk-l<Z<tk<tn<t<tn+l 

go(t, tn) O2-~So(tj, tj§ ~))Q;iUo(t~, ~) 
J 

tn_ 1 < t  < t n < I  k < Z  <-- tk+ 1 

where Uo(t, z) is the fundamental operator of  (6). 

Lemmas 1 and 2 are proved by a straightforward verification. 

L e m m a  3. Let the function q~(t) be piecewise continuous with points of 
discontinuity zn (n = 1, 2, 3 . . . .  ) of  the first kind and for t-> to let the 
following inequality hold: 

q~(t) - c + F~ a~q~(~;) + v(~)q~(~) d~ 
t o < * i < t  0 

where c >-- 0 and ai > 0 are constants and the function v(t) > 0 is locally 
summable on the half-axis to --- t < ~ .  

Then the following estimate is valid: 

Ift 1 ~o(t)<c 1~ ( l + a i )  exp v ( z ) &  
t o  < ~ i <  t I J t  0 

The proo f  of  the lemma is carried out by means of  the lemma of 
Gronwall and Bellman. 

L e m m a  4. Let the following conditions hold: 
1. Condition (B) is met. 
2. The following inequality is valid: 

tk_ 1 < s < tk < tn < t <- tn + 1, v = const, N > O, const 
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Then for the fundamental operator U(t, s) of the impulsive equation 

has the form 

k + l  

Ul(t,s)= 1--I Qy ( t k_ ,<S<tk<tn<t<t ,+ l )  (10) 
j = n  

Then for U~ (t, s) the following estimate is valid: 

II u,(t, s)ll -< Ne-~(t-s) ( l l )  

i.e., the condition of Lemma 4 (Bainov et al., 1988b) is met. For U(t, s) we 
obtain the estimate 

[Iu(t,s)[[ < N exp[-v(t-s)] exp[N s ,lA(~)[I dz] 

The estimates 

- N  t d r ]  s 
-<llv• <Nexp[-v(t--s)] exp N IIA(OII dz 

are proved in an analogous way. �9 

Consider the initial value problem 

dx --~ = f(t, x) (t ~ tn) 

x(t + ) = Q.x(t.) 

X(to) = 

(12) 

(13) 

(14) 

(1), (2) the following estimates are valid: 

N exp[-v(t-s)] exp I -N  s [[A(z)ll dz] 

IIu-+'(t,~)ll <Nexp[-v( t -s )]  exp N IIA(~II dz (7) 

Proof. The fundamental operator of the impulsive equation 

dx 
= 0 (t # tn) (8) 

x(t +) = Qnx(t,) (9) 
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Lemma 5. Let the following conditions hold: 
1. The function f ( t ,  x): J x X - - , X  is continuous on ( J \ T )  x X and 

f ( t ; ,  x) =f(t , ,  x) (xEX). 
2. IV(t, x) - f ( t ,  y)tl -< L(t)IIx - ylt (t ~ J ;  x, y ~x).  

Moreover, the function L(t) satisfies the condition 

/~= sup 1 ['b L(s) ds < oo 
a<b<o~b--a  Ja 

3. f ( t ,  O) = 0 (t ~J) .  
4. Q, ~L(X), n ~N~, J = R. 
Then there exists a unique solution x(t) = X(t, to, ~) of the initial value 

problem (12)-(14) for t E J  for which the following estimate is valid: 

Ilx(Oll ~ I1~11 l-I (1 + Ill, II e~t-'~ 
tn~(min(to, O, max(to, t)) 

(I. =O.  -x) .  

Proof From the theorems on the existence and uniqueness of solu- 
tions of ordinary differential equations (see, e.g., Daleckii and Krein, 1974) 
there follows the existence of a unique solution x(t) (t s J )  of the initial 
value problem (12), (13). For the solution x(t) the following representation 
is valid: 

+ ~of(S, x(s)) ds + ,<t~<,~ Ik(x(tg)), t > to 

x(t) = 

+ ]of(S,  x(s)) ds - ,~t~<~ Ik(x(tk)), t < to 

Let t > to. Then 

f, ilx(OIl ~ t1r + Ilf(s,x(s))lt ~ + 2 Illk(x(tk))ll 
0 t o < t k < t  

~11r L(~)llx(x)llds+ Y, IlI~ll'llx(t,~)li 
0 t o < t k < t  

By Lemma 3 we obtain the estimate 

where 

IIx(OIl ~ IIr 11 ( 1 +  II/,ll)e~=(~-~o> (15) 
t o < t l < t  

E = sup 1 f~  (16) 
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For t < to we obtain an estimate analogous to estimate (15). Lemma 5 is 
proved, �9 

3. MAIN RESULTS 

Let equations (1), (2) and 

dx 
-~  = B(t)x (t # t n) (17) 

x(t + ) = Onx(t~) (18) 

belong to class K. 

Definition 3. Equations (1), (2) and (17), (18) are said to be kinemat- 
ically similar on J if there exists an operator-valued function S ( - ) :  
J ~ L(X)  for which the following conditions are met: 

1. S(t) is bounded and continuous for t ~ t~. 
2. S(t) has discontinuities of the first kind at t --- t. and it is continuous 

from the left. 
3. S(t) has a bounded inverse one. 
4. If  tp(t) is a solution of (1), (2), then S(t)q~(t) is a solution of (17), 

(18). 

Remark L A necessary and sufficient condition for a kinematical 
similarity of (1), (2) and (17), (18) is the existence of an operator-valued 
function S(t) ( t ~ J )  with the properties 1-3 of Definition 4 for which one 
of the following conditions is fulfilled: 

B = S A S - I + S ' S  -1 ( t ~ t n ,  t ~ J )  (19) 

S( t+ )an = anS(tn) (t n 6 N j )  (20) 

or  

S = X Y  -1 

where X and Y are some evolutionary operators of equations (1), (2) and 
(17), (18), respectively. 

We shall call the function S(t) a transforming one. 

Lemma 6. Let the space X be real Hilbert and let it split up into a 
direct sum of subspaces X1 and )(2 with the corresponding projectors P1 
and P2, i.e., X; = PiX (i = 1, 2) and X = X1 q- X2. 

Then there exists a splitting X = X 1 ~- Yz for which the corresponding 
projectors Pl: X ~ XI and P2: X ~ Y2 are Hermitian. 
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Proof. Let Yl be the orthocomplement to X~. Then the projector 
Pl : X ~ }(1 with ker P1 = YI is Hermitian. The projector/3 2 = 1 -/3~ is also 
Hermitian and X splits up into a direct sum of the subspaces X~ and 
/32x. �9 

Lemma 7. Let the space X be Hilbert and let conditions (A), (B) hold. 
Then equation (1), (2) is kinematically similar to the equation 

dx 
dt B(t)x 

where the operator B is Hermitian. 

Proof. For the operator A the representation A = AR + iA j  is valid, 
where A R = (1/2)(A + A*), A• = (1/2i)(A - A * ) .  As a transforming func- 
tion we take the function V-~(t) ( t~J ) ,  where V(t) is a solution of the 
impulsive equation 

dV 
- -  = iA j  V (21) 
dt 

V( t+ ) = Q. V(t.) (22) 

Since the operator iA j  is skew-Hermitian, then the function V(t) is 
unitary and by the Banach-Steinhaus theorem it is bounded. By formula 
(19) for the operator B we obtain the representation 

B = V - I A R V  

and by formula (20) for the impulsive operators 0 .  of the new equation we 
obtain 

0.. = V - l ( t + ) Q .  V(t.) = V- l ( tn )Qn  1Q. V(tn ) = I 

Lemma 7 is proved. �9 

Theorem I. Let the following conditions hold. 
1. The space X is Hilbert with scalar product ( �9 �9 ) and splits up into 

a direct sum of the subspaces X~ and X2 with projectors P~ and P2, 
respectively. 

2. Conditions (A) and (B) hold. 
3. There exists a constant M > 0 for which 

HU(t)PiU-I(t)II < M (i = 1, 2; t e d )  

Then the impulsive equation (3), (4) is kinematically similar to the 
impulsive equation with an operator-valued function B(t) ( t e J )  and 
impulse operators ~ ,  which commute with the projectors Pi (i = 1, 2) and, 
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moreover, the following estimate is valid: 

l l s (0t l  ~ tlA(011 ( t ~  (23)  

Proof By Lemma 6 we shall assume that the projectors P1 and P2 are 
Hermitian. Set 

R2 = P1 S*( t )g( t )Pl  + ]?2 U*(t)U(t)Pz (24) 

It is not hard to check that the operator R2(t) ( tedO is Hermitian and 
uniformly positive. Let R(t) be the positive square root of R2(t). The 
operator R(t) is also Hermitian. Since R2(t) commutes with Pi (i = 1, 2), 
then R(t) also commutes with Pi. Consider the operator-valued function 
S(t) = R( t )U- l (O ( t e J ) ,  where U(O = U(t, 0) is the fundamental operator 
of (1), (2). A straightforward verification yields that the functions S(t) and 
S-1(0 (t eor are continuous and differentiable for t ~ t,, have discontinu- 
ities of the first kind at t = t,, and are continuous from the left. From the 
equalities 

S*S  = ( U - 1 ) * R * R U  -1 = (U-1)*R2U -1 

= (U-I )*PI  U'UP1 U -1 + (U-~)*P2U*UP2 U-1 

= (UP1 U -  l) ,(Up1 U -  i) + (Up2 U -  1), UP2 U -  1 

there follows the estimate 

llsll = __< Iluel u-1tl  2 + IIuP=u-1lt 2 <_ M ~ + (1 + M )  2 < oo 

We shall show that the function S-1(0  is also bounded 

PI(s - ' )*s -1PI  + P2(S- ' )*S- 'P2 

= p 1 R - 1 U * U R - 1 p  1 + P2R-1U*UR-1P2  

= R - I P I U * U P I P I R  -1 + R-1PzU*UP2R -1 

= R-x (P ,  U'UP1 + P2U*UP2)R - t  = I 

Let z EX  be arbitrarily chosen. Then 

l l s - ' z P  = jls-~e~z + s- 'P2zll  = 

<_ (tJs-'Plzlt + lls-'P2zll =) 

<_ 211s-1P, zll ~ + 21fs-tP=zl? 

= 2(S-1PlZ,  S - I P l z )  + 2(S-1P2z, S - IP2z )  

= 2(Pi(S-I)*S-1Plz,  z) + 2(P2(S-1)*S-1Pzz, z) 

= 2((P~ (S- 1)*S--  I P  1 -1- P2(S-')*S-~P2)z, z) 
= 2(z, z) = 211z II = 
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Choose the function S(t) ( t e J )  as a transforming one. Then by formula 
(19) for B we obtain 

B --- S A S  -1 + S ' S  -1 

i.e., 

B = R U - ~ A U R  -~ + (R 'U  -~ + R(U-~) ' )UR ' 

= R U - 1 A U R  -1 + R ' R  -1 _ R U - 1 U ' U - 1 U R - X  

= R U - l A U R  -1 + R ' R  -1 _ R U - 1 A U U - 1 U R - I  

= R ' R - 1  

For the impulsive operators 0 .  by (20) we obtain 

On = S( t+ ) Q . S -  '(t.) 

' = R(t + ) U -  l(t.)Q~- I U(t .)R -l(t,,) 

= R(I + ) U- l ( tn)QnlQn U(tn)R -l(tn) 

= R(t + ) R - ' ( t . )  

The fundamental operator of the new equation is /7 = SU = R. It is not 
hard to check that the operators B(t) and 0n commute with P~, hence with 
P2, too. We shall prove inequality (23). We differentiate equality (24) and 
obtain 

RR" + R ' R  = P~ U*(A* + A)UPI + PEU*(A* + A)UP2 

For an arbitrary z eX the following equality is valid: 

((RR' + R'R)z,  z) = ((A* + A)UPlz ,  UP, z) + ((A* + A)UP2z, UP2 z) (25) 

For any t e J  there exists a minimal constant fl(t) for which for u e X  
the following inequality is valid: 

([A*(t) + A(t)]u, u) < fl(t)(u, u) 

Then from (25) we obtain 

( (RR'  + R 'R) z , z )  < fl{(UP, z, UPlz ) + (UP2z, UP2z) } (z e X )  

i.e., 

((RR" + R'R)z, z) ~ ~(R~z, z) 

Set V = Rz. Then from (26) it follows that 

((RR" + R 'R )R-1v ,  R - i v )  < fl(Rv, R - i v )  

(26) 
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i.e., 

hence 

Hence the operator 

( (R 'R - I  + R- IR ' ) v ,  v) < [~(v, v) 

((R'R-I + R-1R')v, Bllvll = (27) 

(R'R-1 + R-1R,)  = g (B + B*) = eR 

is bounded and from ( 2 7 ) i t  follows that []Bn II < ]]Atl. Inequality (23) 
follows from Lemma 7. 

Theorem 1 is proved. �9 

Definition 4. The impulsive equations (1), (2) and (17), (18) are said to 
be topologically equivalent if there exists a function h: [0, co) x X ~ X  with 
the following properties: 

1. h(t, x) ~ oo as x ~ oo uniformly in t. 
2. The mapping ht : X ~ X defined by the equality 

ht (x) = h(t, x) 

is a homeomorphism for t -> 0. 
3. The mapping g: [0, or) x X ~ X defined by the equality g(t, x) = 

(h,)-l(x) enjoys the property 1. 
4. If  x(t) is a solution of  (1), (2), then h(t, x(t)) is a solution of  (17), 

(18). 

Remark 2. Condition 4 implies the equality 

h(t, X( t )X- l ( s )x )  = Y(t) Y-~(s)h(s, x) 

Remark 3. A straightforward verification shows that the topological 
equivalence is an equivalence relation in the class of  impulsive equations. 

Remark 4. If equations (1), (2) and (17), (18) are kinematically 
similar, then they are topologically equivalent. Indeed, in the definition of  
topological equivalence it suffices to set h(t, x ) =  S(t)x, where S(t) is the 
function realizing the kinematical similarity. 

Let Y c X be an arbitrary subspace with projector P~ ( Y  = P t X )  and 
let Pz = I - P1. 

Definition 5. Y is said to induce an exponential dichotomy for equation 
(1), (2) if the following inequalities are valid: 

]l U(t)P1 U-l(z)[[ -< M e -a( ' -  *~ (, < t < ~ )  

[[V(OP2e-=(~)ll <-Me  -a(*-O (t < z  < oo) 
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where M, 6 are positive constants. In this case equation (1), (2) is said to 
be exponentially dichotomous (with projectors Pl and P2). 

Let Y be an arbitrary Banach space. By B(Y) we shall denote the set 
of functions f (  �9 ): J ~ Y which are continuous for t ~ 6 ,  have points of  
discontinuity of  the first kind at t = 6, and are continuous from the left, 
and which are integrally bounded, i.e., 

~t 
t+  1 

sup IV(s) [1 r ds < 
t a J  

The set B(Y) is a Banach space with norm 

~t t + l  VII ~(Y, = sup LV(s) II Y as 
t~J  

By M(Y) we shall denote the set of  sequences R = {R,} whose 
elements lie in Y and which satisfy the following condition 

sup IIR. It < (28) 
n 

The set M(Y) is a Banach space with norm 

IIRII~,(~) = sup IIR. Ii (29) 
n 

The space 

= s ( L ( x ) )  • M(I.(X)) 

= {(A, Q): A ~B(L(X)), Q EM(L(X))} 

is Banach with norm 

][A, Q) lls = max{llA [[s(L(x)), ]]Q[]i(r(x))} 

Definition 6. The impulsive equation (1), (2) is said to belong to /~, 
which is written as (A, Q)~/~, if A eB(L(X)) and Q EM(L(X)). If the 
impulsive equations (A, Q) and (B, 0 )  are topologically equivalent, we 
write (A, Q) ~ (B, 0). 

Definition 7. Equation (A, Q)~/~ is said to be structurally stable if 
there exists p > 0 such that if [[A - B, Q - ~IIs < P, then the impulsive 
equations (A, Q) and (B, Q) are topologically equivalent. 

Lemma 8. The set of  structurally stable equations forms an open 
nonempty subset of  the Banach space /~. If, moreover, (A, Q)~/~ is 
structurally stable and (A, Q) is kinematically similar to (B, Q)~/~, then the 
equation (B, Q) is also structurally stable. 
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Proof. Let the equation (A, Q)e~g be structurally stable. Then there 
exists a number p > 0 for which the inequality II(A, Q)-  W, ~7)lln < p 
implies (A, Q) -~ (B, 4). The set 

u(s ,  4)  = {(c,  ~)  ~ :  II(c, ~)  - (s ,  4)II~ < p - IlW, 0.) - (A, Q)I1~} 

is a neighborhood of (B, 4) in/~. Then 

II(c, ~) - (A,  Q)[l" < II(c, ~) - W ,  4)II. + Ilw, 4) - (A,  Q)IIn ~ p 
i.e., (C, R) -~ (A, Q). Since (B, Q) ~ (A, Q), then (B, 4) ~ (C, R). Hence the 
equation (B, ~.) is structurally stable. 

Let the function S(t) realize the kinematical similarity between (A, Q) 
and (B, 4). Since the equation (A, Q) is structurally stable, then there exists 
a number 6 > 0 for which [[(A, Q) - (F, Z)[[z < 6 implies (A, Q) -~ (F, Z). 
The set 

4)  = { (c ,  z ) ~ :  II(C, L) - W, O)ll~ U(B, 

< suPt~, Ils(t)llsup,~, Ils-l(t)[[ 

is a neighborhood of (B, 4) in the space/~. 
Consider the operator-valued function D(t)=S-~(t)C(t)S(t) - 

S-l(t)S'(t) and let us estimate the expression [[A - D  [[s(L(x)) : 

II ~ - o llB(.x,) = II s - '  c a  - S - '  S" - ( S - l  s S  - S -18") l [  Br 

= I J s - ' c s -  s-'gSll~<ux)) 

-< IIs-1[l~<.x>, IICBll.<~r < 

The equation (C, L) is kinematically similar to the equation (D, R), 
where R{R. }, R, = S-l(t+ )L,S(t,), hence (C, L) - (D, R). Let us estimate 

IIR - QIIMr162 sup IIR. - Q, II~<x) 
n 

= sup I[S-l(t~+)L.S(t.) - s - ' ( t + ) ~ . s ( t . ) I l L ( x )  
?l 

-< sup [[S-l(t)[] sup [IS(t)[] sup HLn- Q,, Ilz(x) 
t E J  t E J  

= s u p  [ [s - l ( t ) l l  sup [[s(t)]t.  [ I L - O . I I ~ . . . : , ,  < 6  
t ~ J  t E J  

From the estimate obtained it follows that II(D, R) - (A, Q)tla < 6 and 
(D, R ) ~  (A, Q). From the kinematical similarity of (A, Q) and (B, Q) it 
follows that (.4, Q) - (B, 4). 

Lemma 8 is proved. I 
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Lemma 9. Consider the equation 

dx 
--~ = A(t)x, if t ~ tn (30) 

x(t +) = Qnx(tn) (31) 

Assume that (A, Q) satisfies the following conditions: 
1. Equation (A, Q) satisfies the conditions (A), (B) and has an expo- 

nential dichotomy with projector P~; furthermore, IIh(t)ll and ]]an II are 
bounded. 

2. X is a Hilbert space. 
3. limt_~ [i(t, t + T)/T] = p  < oo uniformly in t ~ •. 
Then equation (30), (31) is topologically equivalent to the standard 

equation dxl/dt = - x l ,  dx2/dt = x2, xi EX1, X 2 ~ X  2. 

Proof. First we assume P~ = 0. 
The proof of this lemma is suggested by Palmer (1979a). 
Consider the function 

f_ g(t,  x) = II U('c, t)x II 2 de 
r 

It is easily shown that V(t, x) enjoys the following properties: 
(i) There exist positive constants a, b such that 

allxtl 2-< V(t,x) ~ bllxll 2 

(ii) If x(t) is any solution of (30), (31), then V(t, x(t)) is continuous 
with respect to t e R. 

(iii) V is differentiable with respect to x for every fixed t and differen- 
tiable with respect to t for t #  tn; furthermore, dV(t,x(t))/dt = IIx(t)ll 2, 
where x(t) is any solution of (30), (31). 

Consider the function 

f ( t ,  s, x) = V(t, U(t, s)x) 

It is seen that f is continuous with respect to t, differentiable with respect 
to t for t ~ t.; furthermore, 

-~(t,Of s,x) = IIv(t ,s)xll  2 

Under the assumptions of the lemma we can show without difficulty the 
existence of positive constants c, d such that 

af c l l x t l 2 ~ ( t , s , x ) ~ d l l x l l  2 for all t,S,X 
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Thus the equation 

1 = f ( t ,  s, x) 

has a unique solution t = t(s, x) for all s ~ ~, x ~ X ;  furthermore, t depends 
on (s, x) continuously for x # 0. 

Now we are in a position to establish the homeomorphism which 
transforms (30), (31) into the standard equation. In fact, we defined 
h: R x X ~ R  • X as follows: 

where 

h(x ,  x )  = h A x )  

I~,-,(s, x) U(t(s, x), s) x 
h,(x) = llU(t(s,x),s)xll if x # 0  

if x = 0  

It may be noted that h satisfies the conditions 2 and 4 in Definition 5. It is 
checked that 

where 

hT~(x)=[U(s ,u ){x / [V(u ,x ) ]~ /2  } if x ~ 0  

lo if x = O  

u = ,  - ln l lx  fl 

Finally, we have to show that 

lim IIh,(x)l[= lim 

By definition we have 

where 

Hence 

h;- ' (x) l l  

V(s, x) - 1 = V(s, x) - V(t(s, x), X(t(s,  x), s, x)) 

= D_  V(u, X(u, s, x)) du 
(s, x) 

D_ V(t, X(t ,  s, x)) = lim 1 k-. +o k [V(t., x ( t . ) )  - V ( t .  - k ,  x ( t .  - k))] 

x ( t )  = X ( t ,  s,  x )  

ts - t(s, x) l -< IV(s, x) -- 1]/ inf ~Of (u, s, x) 

u ~  tn 
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i f  Ilxll > 1/x/~,  we  have  V(s, x) > 1. Thus  s > t(s, x) and we obtain 

1 < f ( u ,  s, x) < bllU(u, ~)xll ~ 

Thus 
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1 
~ ( u ,  ~ s ,x~ = [iV(u,s)xll 2_> 

for u~[t(s ,  x),  s], u ~ t , .  So we get 

0 < s - t(s, x)  < (V(s ,  x)  - 1)b -< (a]lx[I 2 - 1)b 

If  IIx II -< l/x/~, we have V(s, x) < 1. Then s <- t(s, x)  and we get 

it(s, x) 
0 ~ 1 - v(~, x) ___ ~ IIx II 2 exp(K(u - ~)) au 

where g, K are defined as positive constants satisfying 

[I U(t, s)H < ~ exp(K(t - s)) for all t ~ s 

The existence of ~, K is easily shown by the assumptions of the lemma. 
We get 

0 <- 1 - bHxil 2 < ~ ][x[I 2 (exp(K[t(s ,  x)  - s)] - 1) 

[&( ')7 1 In 1 -bl lx[I  = § IIxll 2 <_ t ( s , x ) -  1 
K 

From this and the above arguments it follows that there exists an increas- 
ing function LI: [0, oo) ~ [0, ~ ) ,  with LI(0) =0 ,  continuous at 0 such that 

IIh,(x)ll -< L,(IIxD for all s , x  

Similarly, it is shown that there exists L2: [0, ~ ) ~ [ 0 ,  ~ )  with the same 
properties as L~ such that 

l ih ; ' ( x ) l [  <-L2(llx]l) for all s , x  

Finally, from this we deduce without difficulty that 

lim Ilh+(x)][= lira IIh;'(x)ll=~ 
IIxll -~ + [Ixll -~ 

Now we are in a position to prove Lemma 9 without the assumption 
P1 = 0. 

From Theorem 1 it follows that (30), (31) is kinematically similar to 
a reducible equation. Applying repeatedly the above result we obtain the 
proof  of Lemma 9. [] 
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Theorem 2. Let the conditions of Lemma 9 hold. Then equation 
(A, Q) is structurally stable. 

Proof We complete the definition of the function A(t) (re J )  on R in 
such a way that the new function ~(t) is bounded and the equation 

dx = .~(t)x (t ~ t,) (32) 
dt 

x(t +) = Q,x(tn) (tne J )  (33) 

is exponentially dichotomous on R \ J  with projector /'2 for which 
ker P2 + Im Pl = X. Then (Coppel, 1978) equation (32), (33) will be expo- 
nentially dichotomous on ~ with projector P, ker P = ker P2, Im P = 
Im PI. By Lemma 9, equation (32), (33) is topologically equivalent on R to 
the system 

d x  1 
dt = - x l  (xl eX1) (34) 

d x  2 
-dr- = x2 (x2 e x : )  (35) 

If we consider the restrictions of all functions of the system (34), (35) 
on J ,  we obtain that (A, Q) ~ (34), (35). 

By Theorem 3 (Bainov et al., 1989) there exists a number 6 > 0 such 
that for I](B, R ) -  (A, Q)[In < 6, equation (B, R) is exponentially dichoto- 
mous with subspaces Y1 and I12. From Lemma 9 it follows that (B, R) is 
topologically equivalent to the system 

d x  1 
- -  x I (Xl eY1) (36) 

d x  2 
= x2 (x2 eX2) (37) 

Moreover, (34), (35) -~ (36), (37); therefore (B, R) --- (34), (35), i.e., 

(A, Q) = (B, R) 

Theorem 2 is proved. �9 

Remark 5. Following the ideas of the exposition in Palmer (1979b) 
and Lemmas 4 and 5, it is not hard to check that for dim X < oo if 
equation (A, Q) is structurally stable, then it is exponentially dichotomous, 
too. 
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